Extracting lines of curvature from noisy point clouds

نویسندگان

  • Evangelos Kalogerakis
  • Derek Nowrouzezahrai
  • Patricio D. Simari
  • Karan Singh
چکیده

We present a robust framework for extracting lines of curvature from point clouds. First, we show a novel approach to denoising the input point cloud using robust statistical estimates of surface normal and curvature which automatically rejects outliers and corrects points by energy minimization. Then the lines of curvature are constructed on the point cloud with controllable density. Our approach is applicable to surfaces of arbitrary genus, with or without boundaries, and is statistically robust to noise and outliers while preserving sharp surface features. We show our approach to be effective over a range of synthetic and real-world input datasets with varying amounts of noise and outliers. The extraction of curvature information can benefit many applications in CAD, computer vision and graphics for point cloud shape analysis, recognition and segmentation. Here, we show the possibility of using the lines of curvature for feature-preserving mesh construction directly from noisy point clouds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Detection of Power-Transmission Lines in Point Clouds Using Random Forest Method

Inspection of power transmission lines using classic experts based methods suffers from disadvantages such as highel level of time and money consumption. Advent of UAVs and their application in aerial data gathering help to decrease the time and cost promenantly. The purpose of this research is to present an efficient automated method for inspection of power transmission lines based on point c...

متن کامل

Feature Extraction for Illustrating 3D Stone Tools from Unorganized Point Clouds

This paper presents a method for extracting features for illustrating stone tools. Features are detected from unorganized point clouds obtained by a 3D laser scanner. The curvature of each point in the point clouds is estimated by local surface fitting algorithm and used for detecting potential feature points. Feature lines are extracted by directionally growing algorithm. The main idea of our ...

متن کامل

Crest Line Extra tion From Point Clouds

We present a simple, automatic method for extracting feature curves, called crest lines, from point clouds. Crest lines are surface shape features having a mathematical background. Given an unstructured point cloud as input, we pre-process the data to generate some topological information by creating an undirectional surface graph. The method starts with the approximation of normal curvature on...

متن کامل

Extracting Surface Curvature from Noisy Scan Data

In general, the noise that is present in real-world 3D surface scan data prevents accurate curvature calculation. In this paper we show how curvature can be extracted from noisy data by applying filtering after a noisy curvature calculation. To this end, we extend the standard Gaussian filter (as used in 2D image processing) by taking adjacent point distances along the scanned surface into acco...

متن کامل

Detection of some Tree Species from Terrestrial Laser Scanner Point Cloud Data Using Support-vector Machine and Nearest Neighborhood Algorithms

acquisition field reference data using conventional methods due to limited and time-consuming data from a single tree in recent years, to generate reference data for forest studies using terrestrial laser scanner data, aerial laser scanner data, radar and Optics has become commonplace, and complete, accurate 3D data from a single tree or reference trees can be recorded. The detection and identi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer-Aided Design

دوره 41  شماره 

صفحات  -

تاریخ انتشار 2009